RFID Technologies are often used in critical domains or into harsh environments where the on-line detection of RFID system defects is a must.

Objectives

- New on-line monitoring approach detecting reader, RF coupling or tag defects
- Non-intrusive approach: all the information are available from classical RFID system operations

Case Study

- 900MHz UHF RFID System
- EPC Class 1 Gen 2 tags
- Fixed number of tags per pallet: 111 tags
- Configuration detecting almost all the tags:
 - Optimized reader protocol parameters
 - Optimized tag location and direction on boxes
 - Optimized antenna reader types, location and direction

RFID Systems Monitoring

Classical approaches

- Remote monitoring:
 - Only detects catastrophic errors: disconnected or power down readers
- Performances monitoring:
 - \(\text{Average Tag Traffic Volume} \) (ATTV)
 - Requires a learning phase to create a reference
 - \(\text{Global « Read Errors to Total Reads » (RETR)} \)
 - Does not detect local soft errors
 - No localization of defects

New approach

- Characterization of a statistical parameter, the tag Read Rate Profile, individually involving each tag
- Learning phase: Each inventory leads to a specific inventory profile, the Read Rate Profile, which is the ordered read rate curve of the entire population
- Limit profile definition: this limit is computed using the average and the standard deviation of each ordered tags (assuming a Normal distribution)

Experimental Validation & Conclusion

Hardware fault injection

- The following faults have been randomly injected:
 - 5 tags rotated by 90°
 - 5-15-21 tags misplaced on boxes
 - Pallet rotation stopped during 15s-20s

Software fault injection

- The following faults have been randomly injected:
 - 5% RETR on 5 tags
 - 10% RETR on 20 tags

Fault detection

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Tags detected</td>
<td>108</td>
<td>108</td>
<td>109</td>
<td>107</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>RETR (%)</td>
<td>34.9</td>
<td>35.4</td>
<td>37.5</td>
<td>37.3</td>
<td>36.4</td>
<td>38</td>
</tr>
<tr>
<td>ATTV monitoring</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>RETR monitoring</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Profile monitoring</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓: Fault detection ✗: No fault detection

Complementarities of the 3 monitoring methods

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTV monitoring</td>
<td>10%</td>
<td>8%</td>
</tr>
<tr>
<td>RETR monitoring</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Profile monitoring</td>
<td>69%</td>
<td>97%</td>
</tr>
</tbody>
</table>

Conclusion: ATTV and Profile monitoring methods must be concurrently used to detect the maximum number of faults.