logo N&B

Soutenance de thèse de M. Le Duy Lai NGUYEN - Grenoble INP - LCIS2

Imprimer la page
Le laboratoire
logo du groupe Grenoble INP

Université Grenoble Alpes logo

Soutenance de thèse de M. Le Duy Lai NGUYEN

Publié le 18 décembre 2017
Date de l'événement : Mardi 19 Décembre 2017 à 14h30

The title of the thesis is "Multi-layer distributed control of complex systems with communication constraints: application to irrigation channels"

Committee members are

  • Prof. Bastien Chopard, CUI - University of Geneva
  • Prof. Eric Duviella, Institut Mines Telecom Lille Douai (IMT), reviewer
  • Dr. Denis Genon-Catalot, LCIS - UGA, co-supervisor
  • Prof. Laurent Lefèvre, LCIS - Grenoble INP, director
  • Prof. Michel Robert, CRAN - Université de Lorraine, reviewer
  • Prof. Jean-Marc Thiriet, Gipsa-lab - UGA

Abstract :

This thesis presents the control problems of irrigation network with communication constraints and a multi-layer approach to solve these problems in a distributed manner.
The first layer is the hydraulic network itself composed of free-surface channels, hydraulic structures and mesh subnetwork of pressurized pipes. By coupling the Saint-Venant
equations for describing the physics of free-surface fluid and the Lattice Boltzmann method for the fluid simulation, a discrete-time nonlinear model is obtained for the channels. The hydraulic structures are usually treated as internal boundaries of reaches and modeled by algebraic relationships between the flow and pressure variables.
To enable the exchange of the information among the control system’s components, a communication network is considered in the second layer. Solving challenging problems of heterogeneous devices and communication issues (e.g., network delay, packet loss, energy consumption) is investigated by introducing a hybrid network architecture and a dynamic routing design based on Quality of Service (QoS) requirements of control applications. For network routing, a weighted composition of some standard metrics is proposed so that the routing protocol using the composite metric achieves convergence, loop-freeness and pathoptimality properties.
Finally, the third layer introduces an optimal reactive control system developed for the regulatory control of large-scale irrigation channels under a Distributed Cooperative Model Predictive Control (DCMPC) framework. This part discusses different control implementation strategies (e.g., centralized, decentralized, and distributed strategies) and how the cooperative communication among local MPC controllers can be included to improve the performance of the overall system. Managing the divergent (or outdated) information exchanged among controllers is considered in this thesis as a consensus problem and solved by using an asynchronous consensus protocol. Based on the multi-agent system paradigm, this approach to distributed control provides a solution guaranteeing that all controllers have a consistent view of some data values needed for action computation.

Lieu :
Salle A042 à l'Esisar
Pour y accéder, vous pouvez consulter le plan d'accès : cliquez ici

Directeur :
Laurent Lefevre

Directeur Adjoint :
Oum-El-Kheir Aktouf

Responsable Administration et Finances
Carole Seyvet
Tel : 04 75 75 94 49

Assistante Administration et Finances
Jennyfer Duberville
Tel : 04 75 75 94 42
50, rue Barthélémy de Laffemas BP54 26902 VALENCE Cedex 09 France
Tél : +33 (0)4 75 75 94 49 Copyright Grenoble INP